CyanoTag Methods (v1.2) 03.042024

Step-by-step protocols for the generation and analysis of scarlessly tagged proteins in Synechococcus elongatus PCC7942

Written by Dr Abi Perrin, based on CyanoTag protocols developed by Abi Perrin, Guoyan Zhao, Matt Dowson and Luke Mackinder.

Background

Generating CyanoTag lines
1.1 Plasmid Cloning
1.1.1 Backbone plasmid preparation
1.1.2 Homology arm design and amplification
1.1.3 Golden Gate Cloning
1.1.4 E. coli transformation
1.1.5 Plasmid validation and purification
1.2 Cyanobacterial strain generation
1.2.1 S . elongatus transformation
1.2.2 Marked mutant selection
1.2.3 Marked mutant validation
1.2.4 Markerless mutant selection
1.2.5 Marked mutant validation
1.3 Storage and maintenance
1.3.1 Maintenance on BG-11 agar
1.3.2 Cryopreservation

Analysis of CyanoTag lines
2.1 Fluorescence microscopy
2.1.1 Sample Preparation
2.1.2 Fluorescence imaging
2.2 Flow Cytometry
2.3 Affinity Purification - Mass Spectrometry
2.3.1 Preparing S. elongatus cell lysates
2.3.2 Affinity Purification
2.3.3 Mass Spectrometry

Notes
Recommended equipment and materials
Equipment details
Reagents
Reducing single-use plastic waste
Plastics Washing protocols
48-well agar plate divider usage
Appendices
A1: Media and Buffer Recipes

```
    BG-11 recipes
    Affinity purification buffers
    LB24
A2: Plasmid Sequences and Maps
    pLM433
    pLM434
A3: Macro for making montages from single frames of images from the Elyra 7 in Fiji
A4: Datasets
Imaging and expression data
Affinity purification-mass spectrometry (AP-MS) data
Designs and files for constructing CyanoTag Plasmids
```


Background

Here we describe a high-throughput approach for scarless endogenous fluorescent protein tagging in the model cyanobacterium Synechococcus elongatus PCC7942. To date we have used this platform to fluorescently tag over 500 S . elongatus proteins and have used the resulting cyanobacterial cell lines to determine proteins' subcellular localisation, track relative protein abundances and to elucidate protein-protein interaction networks. Most steps can be multiplexed and are amenable to 96 -well formats.

Our data have already provided novel insights into a diverse range of processes relevant to cyanobacteria and to more broadly to photosynthetic and/or bacterial life. We hope these lines, the insights they provide and the optimised methods we have developed in the course of this work will be a valuable resource to cyanobacterial cell biologists, and more widely!

Generating CyanoTag lines

Fig 1a: Genetics underlying the CyanoTag modification pipeline

1.1 Plasmid Cloning

The construction of CyanoTag plasmids involves the insertion of two homology arms (used to target the construct to the target genetic locus) into one of two CyanoTag vectors (pLM433 or 434) using a Golden Gate methods with the restriction enzymes BspQI or Bsal.

Fig 1.1a: Golden Gate Cloning of CyanoTag Vectors. N.B. A Bsal mediated Golden Gate reaction is used where BspQI sites in homology arms would preclude cloning via this approach.

1.1.1 Backbone plasmid preparation

Backbone plasmids maps and sequences are provided below and have been deposited in Addgene.

1. Transform the backbone plasmid (pLM433 or pLM434) into an E.coli strain that is resistant to toxicity from the ccdB gene product (e.g. strains that contain the F plasmid and strains otherwise engineered to be resistant - see here for a list)
2. Grow transformed bacteria (from a colony or glycerol stock) in liquid culture. We use LB24 medium with $25 \mu \mathrm{~g} / \mu \mathrm{L}$ carbenicillin (or ampicillin) and $10 \mu \mathrm{~g} / \mu \mathrm{L}$ kanamycin
3. Purify plasmids (e.g. by miniprep), aiming for a final DNA concentration of at least $200 \mathrm{ng} / \mu \mathrm{L}$.

1.1.2 Homology arm design and amplification

N.B. You may prefer to replace these amplification steps by ordering synthetic homology regions to clone directly into the CyanoTag backbone vectors. We have routinely used homology arms of $\sim 400 \mathrm{bp}$ without noticeable effects on transformation efficiency.

1.1.2.1 Primer design

We have already designed primers and cloning approaches for most genes. Primer designs for the method below and designs for synthetic homology arms (900bp eblocks for cloning using Bsal) are available to download via the Mackinder lab website.

1. Search the regions up to ~ 800 bp before and after the stop codon of your target gene for the presence of BspQI (GCTCTTC) or Bsal (GGTCTC) restriction enzyme recognition sites (check in both orientations)
2. Based on your results, choose a cloning method based on BspQI and pLM433 or Bsal and pLM434; BspQI sites in your homology regions are likely to preclude cloning using BspQI/pLM433, Bsal sites in your homology regions are likely to preclude cloning using Bsal/pLM434. If there are both BspQI and Bsal sites close to the stop codon, you can synthesise the homology arm with a single base pair change to remove the restriction site.
3. For the upstream HA, choose ~ 20 base regions for:

- forward primer to anneal $\sim 400-800$ bp before the stop codon
- reverse primer directly before the stop codon

For the downstream HA, choose ~20 base regions for:

- forward primer to anneal directly after the stop codon (the stop code is not included)
- reverse primer starting $\sim 400-800$ bp after the stop codon

4. Append the following adapter sequences to each of the four primers before ordering

Table 1.1.2.1a: Adapter sequences for CyanoTag primers

Cloning method	Upstream HAs		Downstream HAs	
	Forward adapter 5'-3'	Reverse adapter 5'-3'	Forward adapter 5'-3'	Reverse adapter 5'-3'
BspQI/pLM433	TATAGCTCTTCAACT	TATAGCTCTTCAGCC	TATAGCTCTTCATAG	TATAGCTCTTCAAAG
Bsal/pLM434	TATAGGTCTCAGACT	TATAGGTCTCACGCC	TATAGGTCTCAGTAG	TATAGGTCTCACAAG

1.1.2.2 gDNA preparation

1. Grow a culture of wild-type S. elongatus. We use 50 mL of culture with an $\mathrm{OD}_{730} \sim 1$.
2. Pellet cells by centrifugation at 1500 xg for 15 minutes. Pellets can be used immediately or snap frozen
3. Extract genomic DNA. We use the Promega Wizard ${ }^{\text {TM }}$ Genomic DNA Purification Kit, aiming for a final DNA concentration of at least $50 \mathrm{ng} / \mu \mathrm{L}$.
4. Store at $4^{\circ} \mathrm{C}$. Ideally use this within a couple of months.

1.1.2.3 PCR amplification of HAs

1. Amplify homology arms (upstream and downstream) from gDNA using a high-fidelity, proofreading polymerase. We use Phusion and set up the PCR reaction and thermocycler as follows:

Table 1.1.2.3a: PCR reagents for homology arm amplification (Phusion)

Reagent	Per reaction $(\mu \mathrm{L})$	$\mathbf{x 1 0 0}(\boldsymbol{\mathrm { L })}$ (for a 96 well plate)
$5 \times$ Phusion HF Buffer	10	1000
dNTPs $(10 \mathrm{mM})$	1	100
gDNA $(\sim 50 \mathrm{ng} / \mu \mathrm{L}) 1$	1	100
DMSO (100%)	1	100
Phusion DNA Polymerase	0.5	50
Water (molecular grade)	31.5	3150
F primer $(10 \mu \mathrm{M})$	2.5	Do not include in master mix
Reverse primer $(10 \mu \mathrm{M})$	2.5	Do not include in master mix

Table 1.1.2.3b: Thermocycler program for homology arm amplification PCR (Phusion)

Temperature	Time (s)	Cycles
$98^{\circ} \mathrm{C}$	60 s	1

$98^{\circ} \mathrm{C}$	10 s	$\times 32$
$55^{\circ} \mathrm{C}$	30 s	
$72^{\circ} \mathrm{C}$	30 s	
$72^{\circ} \mathrm{C}$	10 min	

2. Check the success of the amplification by analysing $5 \mu \mathrm{~L}$ of the reaction by gel electrophoresis.
If there is a single band of the expected size, purify the remaining DNA using a PCR cleanup kit (details in Plasmid cloning reagents) and measure the concentration of each HA

1.1.3 Golden Gate Cloning

1. Combine backbone plasmid and homology arms in single Golden Gate reaction

Table 1.1.3a: Golden Gate cloning mixture

Reagent	Per reaction $(\mu \mathrm{L})$	$\mathbf{x 1 0 0}(\mu \mathrm{L})$ $($ for a 96 well plate)
$10 \times$ T4 DNA ligase buffer	0.5	50
Upstream HA ($\sim 100 \mathrm{ng} / \mu \mathrm{L})$	0.9	-
Downstream HA $(\sim 100 \mathrm{ng} / \mu \mathrm{L})$	0.9	-
Backbone vector pLM433* $(\sim 200 \mathrm{ng} / \mu \mathrm{L})$	2	200
BspQl* $(10 \mathrm{U} / \mu \mathrm{L})$	0.25	25
T4 Ligase	0.125	12.5
Water (molecular grade)	0.325	32.5

*For assembly with pLM434 as the backbone vector, use Bsal instead of BspQI.

Table 1.1.3b: Thermocycler program for Golden Gate reactions

Temperature	Time (s)	Cycles
$37^{\circ} \mathrm{C}$	15 min	1
$37^{\circ} \mathrm{C}$	5 min	$\times 20$
$16^{\circ} \mathrm{C}$	5 min	
$37^{\circ} \mathrm{C}$	5 min	1
$65^{\circ} \mathrm{C}$	25 min	1

1.1.4 E. coli transformation

1. Add $15-30 \mu \mathrm{~L}$ chemically competent E. coli (N.B. this must be a strain that is not resistant to $c c d B$) to each completed Golden Gate reaction and incubate the mixture on ice for 30 minutes
2. Heat-shock the plate/tubes for 90 seconds at $42^{\circ} \mathrm{C}$ in a thermocycler.
3. Incubate the cells on ice for another 2 minutes then transfer them to new vessels (deep well plates or microcentrifuge tubes) containing $250 \mu \mathrm{~L}$ SOC buffer per transformation. Shake the cells for 1 hour at $37^{\circ} \mathrm{C}$
4. Plate $150 \mu \mathrm{~L}$ onto LB agar plate containing $25 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and $10 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and incubate the plate overnight at $37^{\circ} \mathrm{C}$

1.1.5 Plasmid validation and purification

1. Check colonies by PCR using primers
a. oLM617: ACAAAGATCACGACATCGACTAT
b. oLM618: CCGCTGCCACCCAGATCG

Fig 1.1.5a: Check PCR used to determine successful integration of homology arms in Golden Gate cloning.
We use a Taq-based master mix for this as follows.
Table 1.1.5a: Colony PCR reagents (Vazyme)

Reagent	Per reaction $(\mu \mathrm{L})$	$\mathbf{x 1 0 0}(\mu \mathrm{L})$ (for a 96 well plate)
Primer oLM617 $(10 \mu \mathrm{M})$	0.5	50
Primer oLM618 $(10 \mu \mathrm{M})$	0.5	50
$2 \times$ Vazyme master mix	5	500
Water (molecular grade)	4	400
E.coli colony	n/a	Do not include in master mix

Table 1.1.5b: Thermocycler program for colony PCR (Vazyme)

Temperature	Time (s)	Cycles
$95^{\circ} \mathrm{C}$	10 min	1
$94^{\circ} \mathrm{C}$	60 s	$\times 32$
$55^{\circ} \mathrm{C}$	30 s	
$72^{\circ} \mathrm{C}$	3 min	
$72^{\circ} \mathrm{C}$	10 min	1

2. Check the products using gel electrophoresis - bands should be around or above 3kb in size.
3. Grow validated colonies overnight in $1-5 \mathrm{~mL}$ (depending on sample numbers and capacity) LB24 with $25 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin and $10 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin in a $37^{\circ} \mathrm{C}$ shaker.
4. Extract the plasmid DNA from the cells by using a miniprep kit (details in Plasmid cloning reagents), aiming for a final concentration of $>50 \mathrm{ng} / \mu \mathrm{L}$.
5. Following purification, check successful integration of homology arms by DNA sequencing. We use the following primers
a. oLM352: CGACACGGAAATGTTGAA
b. oLM349: GCTTGGAGCGAACGACC

1.2 Cyanobacterial strain generation

1.2.1 S. elongatus transformation

1. Grow a culture of wild type S. elongatus up to an $\mathrm{OD}_{730 \mathrm{~mm}}$ of $\sim 0.5-1.0$. We culture these cyanobacteria in BG-11 medium (see below) in glass flasks, on a shaking platform (150 rpm) in an incubator at $30^{\circ} \mathrm{C}$ under continuous illumination of $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ and use 600 mL culture to transform a 96 well plate.
2. Harvest the cells by centrifugation at 1500 xg for 15 min .
3. Wash the cells by resuspending the pellet in 50 mL of 10 mM NaCl , then pelleting the cells by centrifugation at 1500 xg for 15 min .
4. Resuspend the pellet in BG-11 media (10 mL if transforming 96 wells) and transfer $100 \mu \mathrm{~L}$ of the cell suspension into each well of a microplate.
5. Add $10 \mu \mathrm{~L}$ of purified plasmid DNA (500-1000 ng) to each well and mix gently.
6. Incubate the cells at $30^{\circ} \mathrm{C}$ in the dark for $20-24$ hours.
7. Plate at least $20 \mu \mathrm{~L}$ of the cells on BG-11 agar with $25 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and incubate plates at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$. Colonies should start appearing after about a week.

1.2.2 Marked mutant selection

1. Transfer a single colony from each transformation into 1 mL BG-11 containing 50 $\mu \mathrm{g} / \mathrm{mL}$ kanamycin. We use deep-well $96-$ well plates for this. Shake the plate $(\sim 300$ rpm) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 2-3 days.
2. Increase the kanamycin selection: Transfer $100 \mu \mathrm{~L}$ of these cultures into 1 mL BG-11 containing $100 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. Shake the plate ($\sim 300 \mathrm{rpm}$) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 2-3 days.
3. Increase the kanamycin selection again by transferring $100 \mu \mathrm{~L}$ of these cultures into 1 mL BG-11 containing $200 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. Shake the plate ($\sim 300 \mathrm{rpm}$) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 2-3 days.
4. Plate $5 \mu \mathrm{~L}$ of the cells on BG-11 agar with $200 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin and incubate plates at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$. Colonies should start appearing after 2-3 days.

1.2.3 Marked mutant validation

1. Check the target locus of each colony using a colony PCR

Table 1.2.3a: S.elongatus Colony PCR reagents (Vazyme)

Reagent	Per reaction $(\mu \mathrm{L})$	$\mathbf{x 1 0 0}(\mu \mathrm{L})$ (for a 96 well plate)
Upstream HA Forward primer $(10 \mu \mathrm{M})$	0.5	Do not include in master mix
Downstream HA Reverse primer $(10 \mu \mathrm{M})$	0.5	Do not include in master mix
$2 \times$ Vazyme master mix	5	500
Water (molecular grade)	4	400
S.elongatus colony	n / a	Do not include in master mix

Table 1.2.3b: Thermocycler program for S.elongatus colony PCR (Vazyme)

Temperature	Time (s)	Cycles
$95^{\circ} \mathrm{C}$	10 min	1
$94^{\circ} \mathrm{C}$	60 s	$\times 32$
$55^{\circ} \mathrm{C}$	30 s	
$72^{\circ} \mathrm{C}$	3 min	
$72^{\circ} \mathrm{C}$	10 min	1

2. Check the products using gel electrophoresis. Marked bands should be around $\sim 7 \mathrm{~kb}$ but we often see a degree of spontaneous marker removal and the resultant presence of a $\sim 2.5 \mathrm{~kb}$ band for the markerless locus as well as (or instead of) the $\sim 7 \mathrm{~kb}$ one. Smaller bands - in our setup around 1.5 kb - indicate the presence of the wild type locus in at least one copy of the gene. The presence of any wild type locus will likely preclude subsequent marker removal.
3. Maintain validated marked mutants on BG-11 agar with $200 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin

1.2.4 Markerless mutant selection

1. Transfer a single colony of a validated marked mutant to 1 mL BG-11 media (no antibiotics) and shake the plate ($\sim 300 \mathrm{rpm}$) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 2 days until the cultures are pale green.
2. Plate $10-25 \mu \mathrm{l}$ of each culture onto BG-11 agar containing $100 \mu \mathrm{~g} / \mathrm{mL}$ 5 -fluorocytosine ($5-\mathrm{FC}$) and incubate plates at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$. Colonies should start appearing after about a week.

1.2.5 Marked mutant validation

1. Check the target locus of each colony using a colony PCR as detailed in 1.2.3 Marked mutant validation
2. Maintain validated marked mutants on BG-11 agar without antibiotics.

1.3 Storage and maintenance

1.3.1 Maintenance on BG-11 agar

1. CyanoTag mutants are usually viable stored at ambient temperature/light levels on BG-11 agar for a period of months.
2. We array our lines in 96 -well plate format and replicate our libraries monthly using a Singer Rotor instrument.

1.3.2 Cryopreservation

1. To freeze a 1 mL culture for longer term storage:
a. Pellet cells by centrifugation at 5000 xg for 2 minutes
b. Remove the supernatant
c. Resuspend cells in $50-200 \mu \mathrm{~L}$ BG-11 + 5% DMSO
d. Incubate cells on ice for 15 minutes before transferring to $-70^{\circ} \mathrm{C}$
2. To recover frozen isolates:
a. Incubate cells on ice for 10-20 minutes to allow them to thaw
b. For small numbers of lines: plate $10-50 \mu \mathrm{~L}$ cells directly onto BG-11 agar plates (with $200 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin for marked mutants) and incubate plates at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$. Colonies should start appearing within a week.
c. When thawing 96 -well plates, transfer $15 \mu \mathrm{~L}$ into wells containing 1 mL BG-11 (with $200 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin for marked mutants) and shake plate(s) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$. Wells should look green within 3-7 days.

Analysis of CyanoTag lines

2.1 Fluorescence microscopy

2.1.1 Sample Preparation

1. Transfer colonies into 1 mL BG-11 media and shake the plate ($\sim 300 \mathrm{rpm}$) at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 48 hours
2. Prior to imaging, coat the wells of an imaging plate with poly-L-lysine. You can do this by incubating the cells with $0.01 \%(\mathrm{w} / \mathrm{v})$ pol-L-lysine for 5 minutes, then removing the liquid and leaving the plate to dry overnight.
3. Transfer $\sim 50 \mu \mathrm{~L}$ culture into each coated well and centrifuge plate at 3000 xg for 2 minutes. You can then leave the cells to settle for 30 minutes.
4. Cover the cells with $\sim 150 \mu \mathrm{~L} 1.5 \%$ low melting point agarose (prepare in BG-11 medium) and leave to set.

2.1.2 Fluorescence imaging

2.1.2.1 Lattice SIM

We use a Lattice SIM method on a Zeiss Elyra 7 microscope to image our lines, illuminating the samples with the 488 nm laser and dividing the output signal between two cameras to capture the mNG signal and the cellular autofluorescence.

1. Ensure cameras are aligned and adjust them if needed. You can use the sample to do this (as opposed to beads).
2. Collect z stacks of desired fields of view.
3. Process using 3D SIM^{2} algorithm, using "standard live" settings for the autofluorescence and "weak live" for the mNG channel. Use a test image to set an alignment matrix to be integrated into the processing. Ensure 'scale to raw image' is selected.
4. Alignment is often still not perfect for every image and using the channel alignment tool for your final image can help correct this.

2.1.2.2 Image processing in Fiji

1. Select the desired frame of the z stack (where the cellular autofluorescence is clearest).
2. Adjust the brightness of the mNG channel to enable comparison between images. For the images in MORF I have set the default LUT range for this channel as 10-150, though have increased the upper threshold in images where the signal would be greatly oversaturated otherwise (i.e. high expressing lines).
3. We wrote a simple macro to process batches of these images into montages of each channel and a merge - see A2: Macro for making montages from single frames of images from the Elyra 7 in Fiii

2.2 Flow Cytometry

1. Transfer colonies into $100 \mu \mathrm{~L}$ BG-11 media in a transparent microtitre plate. Cover the plate with a breathable seal and shake at $30^{\circ} \mathrm{C}$ under $50 \mu \mathrm{~mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$ for 48 hours.
2. We used a Cytoflex S flow cytometer to analyse mNG fluorescence in these populations, running a well containing cleaning solution and another containing BG11 between each sample. Live cells were gated based on their autofluorescence and the median fluorescence intensity of this live cell population in the FITC channel was used as a proxy for mNG fluorescence

2.3 Affinity Purification - Mass Spectrometry

2.3.1 Preparing S. elongatus cell lysates

2.3.1.1 Prepare cell pellets

1. Grow 50 mL of the CyanoTag line to an $\mathrm{OD}_{730 \mathrm{~nm}}$ of $0.5\left(\sim 5\right.$ days at $30^{\circ} \mathrm{C}$ under 50 $\mu \mathrm{mol}$ photons $/ \mathrm{m}^{2} / \mathrm{s}$).
2. Harvest the cells by centrifugation at $4^{\circ} \mathrm{C}$ at 1500 xg for 15 min and completely remove supernatant. Aim for $\sim 30 \mathrm{mg}$ pellets.
3. Flash freeze the pellet in liquid N_{2} for 90 seconds. Store the cells at $-70^{\circ} \mathrm{C}$ until needed.

2.3.1.2 Lyse cell pellets

Perform the following steps at $4^{\circ} \mathrm{C}$.

1. Prepare and chill 2 mL microcentrifuge tubes containing $\sim 170 \mathrm{mg}$ glass beads 200 $\mu \mathrm{L}$ of AP buffer + PIs $+2 \%$ digitonin.
2. Transfer cell pellets into these chilled prepared tubes using a clean spatula (sterilise by washing in bleach followed by $\mathrm{H}_{2} \mathrm{O}$ between samples).
3. Vortex cells for 6 s , and keep on ice for 10 s ; repeat the vortex and cool down process for 15 min . Ideally do this in a $4^{\circ} \mathrm{C}$ room.
4. Clarify lysate by centrifugation for 30 minutes at full-speed in a table-top centrifuge at $4^{\circ} \mathrm{C}$.

2.3.2 Affinity Purification

2.3.2.1 Prepare NanoTrap Reagent

1. Resuspend mNeonGreen Nano-Trap beads by pipetting. Transfer $25 \mu \mathrm{~L}$ per purification to a 2 mL tube.
2. Place on a MagnaRack and remove storage liquid. Wash Nano-Traps with 0.5 mL ice-cold AP buffer + Pls (without digitonin).
3. Place tubes on MagnaRack and remove supernatant just before adding lysate.

2.3.2.2 Capture proteins on beads

Perform the following steps at $4^{\circ} \mathrm{C}$.

1. Transfer $200 \mu \mathrm{~L}$ of lysate to Nano-Traps being careful not to disturb the pellet or glass beads. Incubate for 1 hour on a rotating platform at $4^{\circ} \mathrm{C}$ at 20 rpm .
2. Place tubes on the MagnaRack and remove the supernatant (keep a sample of this for immunoblotting).
3. Wash the Nano-traps by adding 0.65 mL AP buffer + Pls and 0.1% digitonin, incubating for 3 minutes at 25 rpm on a rotating platform, then place tubes on the MagnaRack and remove the supernatant. Do this wash step 3 times.
4. Perform a final wash with 0.7 mL AP buffer + Pls (no digitonin) and remove all supernatant (keep a sample for immunoblotting)
5. These loaded beads can be stored at $-20^{\circ} \mathrm{C}$. Prior to on-bead digestion and mass spectrometry.

2.3.2.3 On-bead digestion

1. Prior to mass spectrometry, add 100 ng of sequencing grade trypsin to each sample
2. Incubate samples overnight at $37^{\circ} \mathrm{C}$ overnight

2.3.3 Mass Spectrometry

2.3.3.1 Data acquisition

1. Samples were run through an 8 cm Performance column and analysed using parallel accumulation-serial fragmentation data independent acquisition (PASEF-DIA) with DIA fragmentation of $5 \mathrm{~m} / \mathrm{z}$ windows covering $400-1201 \mathrm{~m} / \mathrm{z}$ on a Bruker trapped ion mobility spectrometry time of flight (TimsTOF) mass spectrometer with a long gradient methodology.
2. Resulting data were converted to mzML using MSconvert, before searching using DIA-NN software with the S. elongatus PCC 7942 subset of UniProt and compiled with KNIME. These data were then filtered to 1% FDR. Two peptides (LATSPVLR \& IAQVNLSR) likely corresponding to trypsin autolysis peptides were stripped from the results to prevent false positives.

2.3.3.2 Data processing

1. We filtered the data by running non-normalised protein group quantification values using:
a. a CompPASS package in R Studio, retaining those that fell within the top 1\% in terms of their WD score.
b. a continuous measurement variation of SAINT analysis in Ubuntu, retaining those that fell within the top 7% in terms of their AvgP score.
2. Interactions passing both thresholds were considered high-confidence and were used to generate an interactome in Cytoscape.

Notes

Recommended equipment and materials

Equipment details

- ROTOR HDA instrument used for library maintenance, replication and arraying Singer Instruments, used in combination with
- PlusPlates - Singer Instruments (PLU-003)*
- RePads 96 Long - Singer Instruments (REP-001)*
- Elyra 7 Super Resolution Microscope - Zeiss, used for live imaging in combination with
- μ-Plate 96 Well Square Glass Bottom Imaging plate - Ibidi (89627)
- CytoFLEX S Flow Cytometer - Beckman Coulter
- timsTOF HT Mass Spectrometer - Bruker, used in combination with
- nanoUPLC using an EvoSep One system
- CaptiveSpray ionisation source
- Axygen® 96-well Clear Round Bottom 2 mL Polypropylene Deep Wells - Corning (P-DW-20-C) ${ }^{*}$
- Nunc ${ }^{\text {TM }}$ Square BioAssay Dishes - ThermoFisher (240845)* used with bespoke dividers to create 48-well agar plates see 48-well agar plate divider usage.
- MagnaRack ${ }^{\text {TM }}$ Magnetic Separation Rack - ThermoFisher (CS15000)
- Breathable Plate Sealing Film (Sterile) - Starlab (E2796-3015)
- Polyester Plate Sealing Film (Sterile) - Starlab (E2796-0714)
*Indicates that this product can be washed and reused (see Reducing single-use plastic waste for details and instructions)

Reagents

Plasmid cloning reagents

- Wizard® Genomic DNA Purification Kit - Promega (A1120)
- Phusion ${ }^{\text {TM }}$ High-Fidelity DNA Polymerase - ThermoFisher (F530)
- Wizard® SV 96 PCR Clean-Up System - Promega (A9340)
- QIAquick PCR purification kit - Qiagen (28104)
- BspQI - NEB (R0712)
- Bsal-HFr${ }^{\circledR} 2$ - NEB (R3733)
- T4 DNA Ligase (thermostable) - NEB (M0202)
- $2 \times$ Taq Master Mix (Dye Plus) - Vazyme (P112) for colony PCR checks
- QIAprep spin miniprep kit - Qiagen (27104)
- Wizard® SV 96 Plasmid DNA Purification Kit - Promega (A2250)

S. elongatus culture and selection reagents

- 5-Fluorocytosine (5FC) - Alfa Aesar L16496.MD
- Nystatin - Sigma (N6261)

5-FC Preparation

Make a $10 \mathrm{~g} / \mathrm{L}$ stock solution in DMSO. Aliquot and store at $-20^{\circ} \mathrm{C}$. Working concentration is $100 \mu \mathrm{~g} / \mathrm{mL}$ (1 in 100 of the stock solution).

Imaging reagents

- Poly-L-lysine 0.1% (w/v) - Sigma (P8920) used 1 in 10
- UltraPure ${ }^{\text {TM }}$ Low Melting Point Agarose - ThermoFisher (16520)

Affinity Purification \& Mass Spectrometry reagents

- Digitonin - Sigma (D141)
- Glass beads, acid washed - Sigma (G8772)
- cOmplete Mini, EDTA-free protease inhibitor tablets - Roche (11836170001)
- mNeonGreen-Trap Agarose beads - ChromoTek nta-200
- Sequencing grade trypsin - Promega V5111

Digitonin Preparation

Prepare 10% digitonin solution by dissolving 100 mg Digitonin in 1 mL of $\mathrm{ddH}_{2} \mathrm{O}$ by adding $\mathrm{H}_{2} \mathrm{O}$ slowly to a large surface area of digitonin (spread equally across the length of a 2 mL tube). Heat at $60^{\circ} \mathrm{C}$ for 10 minutes if further dissolution required. Avoid generating bubbles with pipetting.

Reducing single-use plastic waste

By multiplexing our protocols we are reducing resource usage per line, but there are still significant cost and new plastics savings to be made through reuse of 'consumable' items in the pipelines. Some examples of the approaches we have taken are below.

Plastics Washing protocols

1. Remove and decontaminate any culture or agar from the plate/surface
2. Incubate plates in 1% Virkon solution overnight (other disinfectants may also be appropriate)
3. Wash plates in water (standard tap) 3 times and incubate overnight in DI water
4. Dry the plates completely
5. Sterilise before use
a. For polypropylene deep well plates, plate dividers and ROTOR Pads, autoclave
b. For polystyrene plates (bioassay dishes and ROTOR plates), use UV light.

48-well agar plate divider usage

We can significantly increase convenience and reduce cross-contamination and waste by dividing large agar plates into separate wells when selecting colonies on solid media. The workshop in the University of York Biology department made us some plate dividers using offcuts of polypropylene (which can be washed, autoclaved and reused). You can see how we use them below.

Reusable plate dividers for CyanoTag pipeline

Appendices

A1: Media and Buffer Recipes

BG-11 recipes

100x BG-11

Reagent	Quantity for 1 L of 100x BG-11
NaNO_{3}	150 g
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	7.5 g
CaCl_{2}	2.7 g
Citric acid	0.6 g
$\mathrm{Na}_{2} \mathrm{EDTA}(\mathrm{pH} 8)$	1.12 ml of 0.25 M stock solution
$\mathrm{ddH}_{2} \mathrm{O}$	to 1 L.

Additional stock solutions

Reagent	Formulation
$\mathbf{0 . 2 5} \mathbf{M ~ N a}_{2}$ EDTA (pH 8)	9.3 g in 100 mL , adjust to pH 8.0

Iron stock	1 g Ferric citrate in $100 \mathrm{~mL}(\sim 40 \mathrm{mM})$, Requires heat and time to dissolve
Trace metal mix stock	$0.3 \mathrm{~g} \mathrm{H}_{3} \mathrm{BO}_{3}(\sim 45 \mathrm{mM}), 0.18 \mathrm{~g} \mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}(\sim 9 \mathrm{mM}), 22 \mathrm{mg} \mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(\sim 750 \mu \mathrm{M}), 39 \mathrm{mg} \mathrm{Na} \mathrm{NoO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ $(\sim 1.6 \mathrm{mM}), 8 \mathrm{mg} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\sim 300 \mu \mathrm{M}), 5 \mathrm{mg} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\sim 170 \mu \mathrm{M})$ in 100 mL .
NaHCO_{3} stock	8.4 g in $100 \mathrm{~mL}(\sim 100 \mathrm{mM})$, filter sterilise
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ stock	2 g in 100 mL ($\sim 190 \mathrm{mM}$), autoclave
Phosphate stock	$4 \mathrm{~g} \mathrm{~K}_{2} \mathrm{HPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in $100 \mathrm{~mL}(\sim 175 \mathrm{mM})$, autoclave
Vitamin B12 stock	200 mg Cyanocobalamin in $50 \mathrm{~mL}(4 \mathrm{mg} / \mathrm{mL}, \sim 3 \mathrm{mM})$
HEPES stock	119 g in 500 mL ($\sim 1 \mathrm{M}$), pH to 8.2, autoclave
TES buffer stock	23 g in 100 mL ($\sim 100 \mathrm{mM}$), pH to 8.2

BG-11 liquid medium (1L)

Reagent	Quantity for 1 L of BG-11
$100 x$ BG-11	10 mL
Iron stock	1 mL
Trace metal stock	1 mL
Vitamin B12 stock	$100 \mu \mathrm{~L}$
$\mathrm{ddH}_{2} \mathrm{O}$	Up to 978 mL
NaHCO_{3} stock	$10 \mathrm{~mL}:$ Add after autoclaving base mix
$\mathrm{HEPES}^{\text {stock }}$	$10 \mathrm{~mL}:$ Add after autoclaving base mix
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ stock	$1 \mathrm{~mL}:$ Add after autoclaving base mix
$\mathrm{Phosphate} \mathrm{stock}^{1 \mathrm{~mL}: \text { Add after autoclaving base mix }}$	

1. Mix 10 mL 100 x BG-11, 1 mL Iron Stock, 1 mL Trace metal stock, 100 uL Vitamin B12 stock and add water up to a total of 978 mL (as above)
2. Autoclave
3. Before use, add 10 mL NaHCO 3 stock, 10 mL HEPES stock, $1 \mathrm{~mL} \mathrm{Na} \mathrm{CO}_{3}$ stock, 1 mL phosphate stock

BG11 agar plates (1 L)

1. In advance make

- Agar: 15 g agar in 700 mL water
- BG-11 plate mixture

Reagent	Quantity for 1 L of BG-11
$100 x$ BG-11	10 mL
Iron stock	1 mL

Trace metal stock	1 mL
Vitamin B12 stock	$100 \mu \mathrm{~L}$
TES buffer stock	10 mL
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	3 g
$\mathrm{ddH}_{2} \mathrm{O}$	Up to 288 mL

2. Autoclave both solutions
3. Before use, melt agar mix and allow to cool
4. Per 100 mL needed, combine use 70 mL molten agar, 29 mL BG-11 plate mixture, 1 mL NaHCO 3 stock, $100 \mathrm{uL} \mathrm{Na}_{2} \mathrm{CO}_{3}$ stock, 100 uL phosphate stock
5. Add antibiotics at the relevant concentrations and pour plates

Affinity purification buffers
2x AP buffer
Adjust to pH 6.8 . Store at $4^{\circ} \mathrm{C}$
$\left.\begin{array}{|l|l|}\hline \text { Reagent } & \text { Quantity for } 1 \mathrm{~L} \text { of } 2 \times \text { AP buffer } \\ \hline 100 \mathrm{mM} \text { HEPES (MW 238.3) } & 28.83 \mathrm{~g} \\ \hline 100 \mathrm{mM} \mathrm{KOAc}(\mathrm{MW} \mathrm{98.14)} & 9.814 \mathrm{~g} \\ \hline 4 \mathrm{mM} \mathrm{Mg}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW} 214.45) & 4 \mathrm{~mL} \text { of } 1 \mathrm{M} \mathrm{Mg}(\mathrm{OAc})_{2}(10.725 \mathrm{~g} \text { in } 50 \mathrm{~mL} \mathrm{H} \mathrm{H}) \\ \hline 2 \mathrm{mM} \mathrm{CaCl}_{2} & 20 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{CaCl} \\ 2 & (7.36 \mathrm{~g} \mathrm{in} 500 \mathrm{~mL} \mathrm{H} \\ 2\end{array}\right)$.

2x AP buffer + Pls
Make fresh on day of AP, sufficient for 12 APs.

Reagent	Quantity for 25 mL
$2 \times$ AP buffer	24.5 mL
1 mM NaF (MW 41.99) (Ser/Thr Phosphatase inhibitor)	$50 \mu \mathrm{~L}$ of 1 M solution ($0.4199 \mathrm{~g} \mathrm{in} 10 \mathrm{~mL} \mathrm{H2O}$)
$0.3 \mathrm{mM} \mathrm{Na}_{3} \mathrm{VO}_{4}$ (MW 183.91) (Tyr Phosphatase inhibitor)	$50 \mu \mathrm{~L}$ of 0.3 M solution (0.552 g in 10 mL H O adjust pH to 10, boil, readjust pH to 10 and aliquot)
Roche cOmplete EDTA-free protease inhibitors	1 tablet
$1 \mathrm{mM} \mathrm{PMSF} \mathrm{(MW} \mathrm{174.2)} \mathrm{(Protease} \mathrm{inhibitor)}$	$500 \mu \mathrm{~L}$ of 100 mM solution (3.484 g in 20 mL isopropanol)

Working AP buffers

- $\mathbf{1 7 m L}$ AP buffer + Pls: $8.5 \mathrm{~mL} 2 \times$ AP buffer + Pls, 8.5 mL ddH $_{2} \mathrm{O}$
- 30 mL AP buffer + Pls + 0.1\% digitonin: $15 \mathrm{~mL} 2 \times$ AP buffer + Pls, $300 \mu \mathrm{~L} 10 \%$ digitonin, $14.7 \mathrm{~mL} \mathrm{ddH}_{2} \mathrm{O}$
- 3 mL AP buffer + Pls $+2 \%$ digitonin: $1.5 \mathrm{~mL} 2 \times$ AP buffer + Pls, $600 \mu \mathrm{~L} 10 \%$ digitonin, $900 \mu \mathrm{~L}$ ddH $_{2} \mathrm{O}$
- Make these fresh on the day of AP, sufficient for 12 APs.

LB24

- Per $1 \mathrm{~L}:$ Mix 10 g tryptone, 24 g yeast extract, $5 \mathrm{~g} \mathrm{NaCl}, 1 \mathrm{~mL} 1 \mathrm{M} \mathrm{NaOH}$, autoclave.

A2: Plasmid Sequences and Maps

Abstract

pLM433 >pLM433_CyanoTag_BspQI_BasePlasmid Plasmid used for creating CyanoTag vectors by Golden Gate cloning (BspQI version) ATGGTTAGTAAGGGTGAGGAAGACAATATGGCAAGCCTGCCGGCAACGCACGAACTGCATATCTTTGGTTCGATCAACGGC GTGGACTTTGACATGGTCGGCCAGGGGACTGGTAACCCGAACGATGGCTACGAGGAACTGAACCTGAAATCGACAAAAGG CGATCTGCAATTCTCGCCATGGATTCTCGTGCCGCATATTGGGTACGGCTTTCACCAGTATTTGCCGTATCCAGATGGCATGA GTCCGTTTCAAGCCGCTATGGTCGATGGTAGCGGCTATCAGGTGCATCGCACTATGCAGTTTGAAGACGGCGCCAGTTTGA CAGTCAATTACCGTTACACTTATGAAGGCTCGCATATTAAAGGTGAGGCGCAAGTTAAGGGTACCGGGTTTCCCGCCGACGG TCCCGTGATGACTAATAGCCTGACCGCGGCTGATTGGTGCCGTAGCAAAAAAACCTACCCGAACGACAAAACCATCATTTCC ACGTTTAAATGGAGCTATACTACAGGTAACGGGAAGCGCTATCGCTCGACGGCGCGCACTACATACACGTTCGCGAAACCG ATGGCCGCGAATTACCTCAAAAACCAGCCGATGTATGTGTTTCGTAAAACCGAGCTGAAACATAGCAAGACAGAACTGAACT TTAAAGAGTGGCAGAAAGCATTCACAGACGTCATGGGCATGGATGAACTGTACAAGGGCGGTGGCGATTACAAAGATCACG ATGGCGATTACAAAGATCACGACATCGACTATAAGGATGACGATGATAAGTAGGCTTCAAATAAAACGAAAGGCTCAGTCGAA AGACTGGGCCTTTCGTTTTATCTGTTTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTT TCTGCGGGAATTCGATTGATCCGTCGACCTGCAGGGGGGGGGGGGAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACA TTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATAT TCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATA ATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAG GTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCAT TTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCC TGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTA ACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGA GCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCAT GGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGCGTCGGAATCGCAGA CCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATG GTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAA CACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGAT CACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGC TCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGCCAGCAACACCTTCTTC ACGAGGCAGACCTCAGCGCTCCTCCACCGCTGCAGTTCACTTACACCGCTTCTCAACCCGGTACGCACCAGAAAATCATTG ATATGGCCATGAATGGCGTTGGATGCCGGGCAACAGCCCGCATTATGGGCGTTGGCCTCAACACGATTTTACGTCACTTAAA AAACTCAGGCCGCAGTCGGTAACCTCGCGCATACAGCCGGGCAGTGACGTCATCGTCTGCGCGGAAATGGACGAACAGTG GGGCTATGTCGGGGCTAAATCGCGCCAGCGCTGGCTGTTTTACGCGTATGACAGTCTCCGGAAGACGGTTGTTGCGCACG TATTCGGTGAACGCACTATGGCGACGCTGGGGCGTCTTATGAGCCTGCTGTCACCCTTTGACGTGGTGATATGGATGACGG ATGGCTGGCCGCTGTATGAATCCCGCCTGAAGGGAAAGCTGCACGTAATCAGCAAGCGATATACGCAGCGAATTGAGCGGC ATAACCTGAATCTGAGGCAGCACCTGGCACGGCTGGGACGGAAGTCGCTGTCGTTCTCAAAATCGGTGGAGCTGCATGAC AAAGTCATCGGGCATTATCTGAACATAAAACACTATCAATAAGTTGGAATCATTACCAAAAGGTTAGGAATACGGTTAGCCATT TGCCTGCTTTTATATAGTTCATATGGGATTCACCTTTATGTTGATAAGAAATAAAAGAAAATGCCAATAGGATATCGGCATTTTCT TTTGCGTTTTCAACGTTTGTAATCGATGGCTTCTGGCTGCTCCAGATATACGGTGGTTTGTGCCGGTTGTGTGCTGGCAATC ACCTTGCCGCCACGTACCGAATAACGTACCGGAACCTGACGGCGCAGCGCATCAAACCCATTTTCAGCCGGCAGGATAATC AGGTTGGCGCTGTTTCCGGCGGCAATGCCGTAATCCTGCAAATTCAACGTCCTTGCGCTGTGGTGGGTGATTAAATTCAGG CCATCGTTAATCTGCCCGTAGCCCATCAACTGGCAAACATGCAGCCCCATATGCAGCACTTGCAGCATATTCGCCGTTCCCA GCGGATACCACGGATCGAAGACATCATCGTGACCAAAGCAGACGTTAATGCCCGATTCCAGCATCTCTTTAACGCGCGTGAT GCCGCGACGTTTTGGATACGTATCGAAACGTCCTTGCAGATGAATATTGACCAGCGGGTTGGCGACAAAGTTAATACCGGAC ATTTTCAGCAAGCGGAACAGGCGTGAGGTATACGCCCCGTTATAGGAGTGCATTGCCGTGGTGTGGCTGGCGGTGACGCG CGCGCCCATGCCTTCATGGTGCGCCAGGGCAGCAACGGTTTCGACAAAGCGCGACTGCTCGTCATCGATCTCATCACAGT GAACGTCGATGAGACGGTCGTATTTTTGCGCCAGGGCGAAGGTTTTATGCAGCGATTCCACGCCGTATTCACGGGTAAATTC

AAAATGCGGAATCGCCCCCACTACATCTGCCCCTAAGCGTAACGCCTCTTCCAGCAACGCTTCACCGTTGGGATACGACAA AATCCCTTCCTGAGGGAAGGCGACGATTTGCAGATCAATCCACGGCGCGACTTCCTGCTTCACTTCCAGCATTGCTTTCAG CGCAGTTAGCGTTGCATCCGAAACATCGACATGGGTACGCACATGCTGAATGCCGTTGGCAATCTGCCATTTCAGCGTTTGC CATGCGCGTTGTTTCACATCGTCATGGGTTAATAACGCTTTGCGCTCGGCCCAGCGTTCAATGCCTTCAAACAGCGTGCCG GACTGATTCCAGTTCGGTTGTCCGGCGGTTTGCGTGGTGTCCAGGTGAATATGTGGCTCCACAAACGGCGGTATAACTAAA CCTTGTTCGGCATCCAGGCTGTTTTCAGTTATGGGCATCACGCCGGATTGCGCATCAATGGCGCTGATTTTTCCGTCCTGCA GATGAATCTGCCACAGCCCCTCTTCGCCTGGTAACCGGGCGTTAATAATTGTTTGTAAAGCGTTATTCGACATCGTTCATGTC TCCTTTTTTATGTACTGTGTTAGCGGTCTGCTTCTTCCAGCCCTCCTGTTTGAAGATGGCAAGTTAGTTACGCACAATAAAAAA AGACCTAAAATATGTAAGGGGTGACGCCAAAGTATACACTTTGCCCTTTACACATTTTAGGTCTTGCCTGCTTTATCAGTAACA AACCCGCGCGATTTACTTTTCGACCTCATTCTATTAGATTCTCGTTTGGATTGCAACTGGTCTATTTTCCTCTTTTGTTTGATAG AAAATCATAAAAGGATTTGCAGACTACGGGCCTAAAGGTTAGTAAGGGTGAGGAAGACAATATGGCAAGCCTGCCGGCAAC GCACGAACTGCATATCTTTGGTTCGATCAACGGCGTGGACTTTGACATGGTCGGCCAGGGGACTGGTAACCCGAACGATGG CTACGAGGAACTGAACCTGAAATCGACAAAAGGCGATCTGCAATTCTCGCCATGGATTCTCGTGCCGCATATTGGGTACGGC TTTCACCAGTATTTGCCGTATCCAGATGGCATGAGTCCGTTTCAAGCCGCTATGGTCGATGGTAGCGGCTATCAGGTGCATC GCACTATGCAGTTTGAAGACGGCGCCAGTTTGACAGTCAATTACCGTTACACTTATGAAGGCTCGCATATTAAAGGTGAGGC GCAAGTTAAGGGTACCGGGTTTCCCGCCGACGGTCCCGTGATGACTAATAGCCTGACCGCGGCTGATTGGTGCCGTAGCA AAAAAACCTACCCGAACGACAAAACCATCATTTCCACGTTTAAATGGAGCTATACTACAGGTAACGGGAAGCGCTATCGCTCG ACGGCGCGCACTACATACACGTTCGCGAAACCGATGGCCGCGAATTACCTCAAAAACCAGCCGATGTATGTGTTTCGTAAAA CCGAGCTGAAACATAGCAAGACAGAACTGAACTTTAAAGAGTGGCAGAAAGCATTCACAGACGTCATGGGCATGGATGAAC TGTACAAGGGCGGTGGCGATTACAAAGATCACGATGGCGATTACAAAGATCACGACATCGACTATAAGGATGACGATGATAA GTAGTGAAGAGCTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATAC CCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGG CATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAA GCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTG GTGAAATGCAGTTTAAGGTTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACA CGCCCGGGCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCCCCCGTGAACTTTACCCGGTG GTGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTGTCCGTTATCGGGGAAGAAGTG GCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTAT ACACAGCCAGTCTGCAGGTCGACCATAGTGCTCTTCACTTGAGACTCTTTCCATAGGCTCCGCCCCCCTGACGAGCATCAC AAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAT AGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCC CGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGCCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCAC TGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTC ACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTT AATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGGCTCCCCGTCGTGTAGATAACTACGA TACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGTGACCCACGCTCACCGGCTCCAGATTTATCAGCAA TAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCC GGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTC GTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCG GTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATA ATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGC GGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGG AAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAAC TGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAA GGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCG GATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGGAGTCAGACTTGAAGAGCTAAAAGCCAGATAACA GTATGCGTATTTGCGCGCTGATTTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTA TGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGG TAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAG GTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACACCTAT AAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGATGGTGATCCCCC TGGCCAGTGCACGTCTGCTGTCAGATAAAGTCCCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGCA TGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACA TCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGACCATAG TGCTCTTCAGGCGATCTGGGTGGCAGCGGCGGCCGC

pLM434
>pLM434_CyanoTag_Bsal_BasePlasmid Plasmid used for creating CyanoTag vectors by Golden Gate cloning (Bsal version) ATGGTTAGTAAGGGTGAGGAAGACAATATGGCAAGCCTGCCGGCAACGCACGAACTGCATATCTTTGGTTCGATCAACGGC GTGGACTTTGACATGGTCGGCCAGGGGACTGGTAACCCGAACGATGGCTACGAGGAACTGAACCTGAAATCGACAAAAGG CGATCTGCAATTCTCGCCATGGATTCTCGTGCCGCATATTGGGTACGGCTTTCACCAGTATTTGCCGTATCCAGATGGCATGA GTCCGTTTCAAGCCGCTATGGTCGATGGTAGCGGCTATCAGGTGCATCGCACTATGCAGTTTGAAGACGGCGCCAGTTTGA CAGTCAATTACCGTTACACTTATGAAGGCTCGCATATTAAAGGTGAGGCGCAAGTTAAGGGTACCGGGTTTCCCGCCGACGG TCCCGTGATGACTAATAGCCTGACCGCGGCTGATTGGTGCCGTAGCAAAAAAACCTACCCGAACGACAAAACCATCATTTCC ACGTTTAAATGGAGCTATACTACAGGTAACGGGAAGCGCTATCGCTCGACGGCGCGCACTACATACACGTTCGCGAAACCG ATGGCCGCGAATTACCTCAAAAACCAGCCGATGTATGTGTTTCGTAAAACCGAGCTGAAACATAGCAAGACAGAACTGAACT TTAAAGAGTGGCAGAAAGCATTCACAGACGTCATGGGCATGGATGAACTGTACAAGGGCGGTGGCGATTACAAAGATCACG ATGGCGATTACAAAGATCACGACATCGACTATAAGGATGACGATGATAAGTAGGCTTCAAATAAAACGAAAGGCTCAGTCGAA AGACTGGGCCTTTCGTTTTATCTGTTTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTT TCTGCGGGAATTCGATTGATCCGTCGACCTGCAGGGGGGGGGGGGAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACA TTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATAT TCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATA ATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAG GTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCAT TTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCC TGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTA ACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGA GCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCAT GGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGCGTCGGAATCGCAGA CCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATG GTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAA

CACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGAT CACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGC TCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGCCAGCAACACCTTCTTC ACGAGGCAGACCTCAGCGCTCCTCCACCGCTGCAGTTCACTTACACCGCTTCTCAACCCGGTACGCACCAGAAAATCATTG ATATGGCCATGAATGGCGTTGGATGCCGGGCAACAGCCCGCATTATGGGCGTTGGCCTCAACACGATTTTACGTCACTTAAA AAACTCAGGCCGCAGTCGGTAACCTCGCGCATACAGCCGGGCAGTGACGTCATCGTCTGCGCGGAAATGGACGAACAGTG GGGCTATGTCGGGGCTAAATCGCGCCAGCGCTGGCTGTTTTACGCGTATGACAGTCTCCGGAAGACGGTTGTTGCGCACG TATTCGGTGAACGCACTATGGCGACGCTGGGGCGTCTTATGAGCCTGCTGTCACCCTTTGACGTGGTGATATGGATGACGG ATGGCTGGCCGCTGTATGAATCCCGCCTGAAGGGAAAGCTGCACGTAATCAGCAAGCGATATACGCAGCGAATTGAGCGGC ATAACCTGAATCTGAGGCAGCACCTGGCACGGCTGGGACGGAAGTCGCTGTCGTTCTCAAAATCGGTGGAGCTGCATGAC AAAGTCATCGGGCATTATCTGAACATAAAACACTATCAATAAGTTGGAATCATTACCAAAAGGTTAGGAATACGGTTAGCCATT TGCCTGCTTTTATATAGTTCATATGGGATTCACCTTTATGTTGATAAGAAATAAAAGAAAATGCCAATAGGATATCGGCATTTTCT TTTGCGTTTTCAACGTTTGTAATCGATGGCTTCTGGCTGCTCCAGATATACGGTGGTTTGTGCCGGTTGTGTGCTGGCAATC ACCTTGCCGCCACGTACCGAATAACGTACCGGAACCTGACGGCGCAGCGCATCAAACCCATTTTCAGCCGGCAGGATAATC AGGTTGGCGCTGTTTCCGGCGGCAATGCCGTAATCCTGCAAATTCAACGTCCTTGCGCTGTGGTGGGTGATTAAATTCAGG CCATCGTTAATCTGCCCGTAGCCCATCAACTGGCAAACATGCAGCCCCATATGCAGCACTTGCAGCATATTCGCCGTTCCCA GCGGATACCACGGATCGAAGACATCATCGTGACCAAAGCAGACGTTAATGCCCGATTCCAGCATCTCTTTAACGCGCGTGAT GCCGCGACGTTTTGGATACGTATCGAAACGTCCTTGCAGATGAATATTGACCAGCGGGTTGGCGACAAAGTTAATACCGGAC ATtTTCAGCAAGCGGAACAGGCGTGAGGTATACGCCCCGTTATAGGAGTGCATTGCCGTGGTGTGGCTGGCGGTGACGCG CGCGCCCATGCCTTCATGGTGCGCCAGGGCAGCAACGGTTTCGACAAAGCGCGACTGCTCGTCATCGATCTCATCACAGT GAACGTCGATGAGACGGTCGTATTTTTGCGCCAGGGCGAAGGTTTTATGCAGCGATTCCACGCCGTATTCACGGGTAAATTC AAAATGCGGAATCGCCCCCACTACATCTGCCCCTAAGCGTAACGCCTCTTCCAGCAACGCTTCACCGTTGGGATACGACAA AATCCCTTCCTGAGGGAAGGCGACGATTTGCAGATCAATCCACGGCGCGACTTCCTGCTTCACTTCCAGCATTGCTTTCAG CGCAGTTAGCGTTGCATCCGAAACATCGACATGGGTACGCACATGCTGAATGCCGTTGGCAATCTGCCATTTCAGCGTTTGC CATGCGCGTTGTTTCACATCGTCATGGGTTAATAACGCTTTGCGCTCGGCCCAGCGTTCAATGCCTTCAAACAGCGTGCCG GACTGATTCCAGTTCGGTTGTCCGGCGGTTTGCGTGGTGTCCAGGTGAATATGTGGCTCCACAAACGGCGGTATAACTAAA CCTTGTTCGGCATCCAGGCTGTTTTCAGTTATGGGCATCACGCCGGATTGCGCATCAATGGCGCTGATTTTTCCGTCCTGCA GATGAATCTGCCACAGCCCCTCTTCGCCTGGTAACCGGGCGTTAATAATTGTTTGTAAAGCGTTATTCGACATCGTTCATGTC TCCTTTTTTATGTACTGTGTTAGCGGTCTGCTTCTTCCAGCCCTCCTGTTTGAAGATGGCAAGTTAGTTACGCACAATAAAAAA AGACCTAAAATATGTAAGGGGTGACGCCAAAGTATACACTTTGCCCTTTACACATTTTAGGTCTTGCCTGCTTTATCAGTAACA AACCCGCGCGATTTACTTTTCGACCTCATTCTATTAGATTCTCGTTTGGATTGCAACTGGTCTATTTTCCTCTTTTGTTTGATAG AAAATCATAAAAGGATTTGCAGACTACGGGCCTAAAGGTTAGTAAGGGTGAGGAAGACAATATGGCAAGCCTGCCGGCAAC GCACGAACTGCATATCTTTGGTTCGATCAACGGCGTGGACTTTGACATGGTCGGCCAGGGGACTGGTAACCCGAACGATGG CTACGAGGAACTGAACCTGAAATCGACAAAAGGCGATCTGCAATTCTCGCCATGGATTCTCGTGCCGCATATTGGGTACGGC TTTCACCAGTATTTGCCGTATCCAGATGGCATGAGTCCGTTTCAAGCCGCTATGGTCGATGGTAGCGGCTATCAGGTGCATC GCACTATGCAGTTTGAAGACGGCGCCAGTTTGACAGTCAATTACCGTTACACTTATGAAGGCTCGCATATTAAAGGTGAGGC GCAAGTTAAGGGTACCGGGTTTCCCGCCGACGGTCCCGTGATGACTAATAGCCTGACCGCGGCTGATTGGTGCCGTAGCA AAAAAACCTACCCGAACGACAAAACCATCATTTCCACGTTTAAATGGAGCTATACTACAGGTAACGGGAAGCGCTATCGCTCG ACGGCGCGCACTACATACACGTTCGCGAAACCGATGGCCGCGAATTACCTCAAAAACCAGCCGATGTATGTGTTTCGTAAAA CCGAGCTGAAACATAGCAAGACAGAACTGAACTTTAAAGAGTGGCAGAAAGCATTCACAGACGTCATGGGCATGGATGAAC TGTACAAGGGCGGTGGCGATTACAAAGATCACGATGGCGATTACAAAGATCACGACATCGACTATAAGGATGACGATGATAA GTAGTGAGACCTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACC CGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGC ATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAG CGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGG TGAAATGCAGTTTAAGGTTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACAC GCCCGGGCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCCCCCGTGAACTTTACCCGGTGG TGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGG CTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATA CACAGCCAGTCTGCAGGTCGACCATAGTGGTCTCACTTGAGACTCTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAA AAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGT GCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAG CTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGCCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAA GAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAAC CACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATC TTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCAC CTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAA TCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGGCTCCCCGTCGTGTAGATAACTACGATA CGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGTGACCCACGCTCACCGGCTCCAGATTTATCAGCAATA AACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGG GAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGT CGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGT TAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATT СTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGG

CGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAA AACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACT GATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAG GGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGGAGTCAGACTTGAGACCTAAAAGCCAGATAACAGTA TGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGA AGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAA GCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGT CGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACACCTATAA AAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGATGGTGATCCCCCT GGCCAGTGCACGTCTGCTGTCAGATAAAGTCCCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGCAT GATGACCACCGATATGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACAT CAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGACCATAGT GGTCTCAGGCGATCTGGGTGGCAGCGGCGGCCGC

A3: Macro for making montages from single frames of images from the Elyra 7 in Fiji

Adapted from a previous Macro supplied by James Barrett

```
input = getDirectory("Input Directory");
output = getDirectory("Output Directory");
someString = getString("Filetype", ".czi");
suffix = someString
processFolder(input);
function processFolder(input) {
    list = getFileList(input);
    for (i=0; i < list.length; i++) {
        if(File.isDirectory(input + list[i]))
                processFolder("" + input + list[[]);
        if(endsWith(list[i], suffix))
            processFile(input, output, list[i]);
        print( list[i] );
    }
}
function processFile(input, output, file) {
    open(input + file);
    name=getTitle;
    selectWindow(name);
    run("Split Channels");
    list2 = getList("image.titles");
    for( i = 0; i < list2.length; i++ ) print( list2[i] );
    run("Merge Channels...", "c6="+list2[0]+" c2="+list2[1]+" create ignore");
    run("Split Channels");
    run("Merge Channels...", "c2=C1-Composite c6=C2-Composite create keep ignore");
    run("Scale Bar...", "width=5 height=4 font=24 color=White background=None location=[Lower Right] bold overlay");
    run("Flatten");
    selectWindow("C1-Composite");
    run("RGB Color");
    selectWindow("C2-Composite");
    run("RGB Color");
    run("RGB Color", "C2-Composite");
    run("Combine...","stack1=[C2-Composite] stack2=[C1-Composite]");
    run("Combine...", "stack1=[Combined Stacks] stack2=[Composite (RGB)]");
    saveAs("Tiff", output + file + "_out");
    close("*");
}
```


A4: Datasets

Imaging and expression data

All data will be shared via the multi-omics resource factory (MORF) at https://morf-db.org/projects/York-Mackinder-Lab/MORF000032 Upload history:

- Upload 1- January 2024: initial dataset for 400 initial targets
- Upload 2- March 2024: data for over 700 targets, and some minor updates and corrections to the previous upload

Affinity purification-mass spectrometry (AP-MS) data
All mass spectrometry data sets, along with DIA-NN search in-puts and results files are referenced in ProteomeXchange (PXD049961) and are available to download from MassIVE (MSV000094128) [doi:10.25345/C5VQ2SN3R]. Interaction data is also available via MORF.

Designs and files for constructing CyanoTag Plasmids
Primer designs and designs for synthetic homology arms (900bp eblocks for cloning using Bsal) are available to download via the Mackinder lab website.

